Posts mit dem Label Schwefeldioxid werden angezeigt. Alle Posts anzeigen
Posts mit dem Label Schwefeldioxid werden angezeigt. Alle Posts anzeigen

Dienstag, 23. September 2014

El Hierro Erdbebenstatistik im Vergleich

Die El Hierro Erdbebenstatistik zeigt Unterschiede zu Island auf.


Die jüngsten Beben der vergangenen Tage unter El Hierro lagen bei einem Maximum von ML2,1 – siehe IGN Grafik oben. Auch der stärkste Erdstoß vom Dezember 2013 erreichte “nur” ML5.1. Im Vergleich zu Island waren das noch bescheidene und selten auftretende Starkbeben. Allerdings hatte das Dezember Beben auf El Hierro schon erhebliche Erdrutsche und Steinschlag verursacht. Auf Island gehören seit 4 Wochen Beben von mehr als ML5,0 zum Tagesprogramm. So auch heute Morgen um 4.33 Uhr der ML5,2 Erdstoß aus 10 km Tiefe (Siehe IMO Seismograf). Es waren bisher über 20 Starkbeben bis ML5,9.

Vulkan ist nicht gleich Vulkan


Hier gibt es zwischen der El Hierro Erdbebenstatistik und dem Bardarbunga auf Island gravierende Unterschiede. Die tägliche Bebenanzahl mit den Schwarmbeben ist nahezu mit der eruptiven Phase 2011/12 auf El Hierro identisch. Nur liegt die Intensität und Stärke der Erdstöße um einiges höher. Auch wenn es vielleicht zunächst nicht den Anschein hat, so beträgt der Unterschied zwischen einem gemessenen Beben von ML5,0 zu ML6,0 die 33 fache Steigerung. Die Erhöhung der Magnitude um 1 bedeutet dabei eine 33-fach höhere Energiefreisetzung – siehe auch meine Erklärung im Blog.
Und das hätte erhebliche Auswirkungen auf die geologische Struktur von El Hierro gehabt. Fast nur hohe Berge und Steilwände und kaum ebene Rückzugsgebiete – dafür ist die Insel zu klein. Nicht nur die Bebenstärke sondern auch die Anhäufung der Starkbeben, hätte große Gesteinsplatten gelockert und abgesprengt und der Schwerkraft ins Tal folgen lassen. Mit entsprechenden Folgen zum Beispiel für die Anwohner im Golfotal oder der Ostflanke.
Auf Island sind weite Teile im Nordosten dagegen unbewohnt. Hier spielt es keine große Rolle ob Erdrutsche oder Lava (bisher 33 km²) Flächen bedecken. Hier sind es die Vulkangase die auch in weiter entfernten Gebieten Menschen bedrohen können.

Das in großen Mengen ausgestoßene Schwefeldioxid (SO2) hier auf der aktuellen Vedur-Karte rot – zieht im Augenblick nach Nordosten ab. Schon eine Richtungsänderung des Windes in den bewohnten Bereich im Westen könnte zur Gefahr werden. Aufgrund der Inselgröße wird es aber immer Ausweichmöglichkeiten bei einer evtl. Evakuierung geben. Noch beschränkt sich die Eruption auf ein Gebiet nördlich der weißen Eismasse. Große Mengen Wasser sind in diesem bis zu 600 Meter dicken Gletschereis gespeichert. Falls der Vulkan Teile des Eises ab schmilzt, sind starke Wasserläufe und  Überschwemmungen zu erwarten.

Noch ist es aber nicht so weit. Das von der IMO veröffentlichte NASA Satellitenbild vom 22. September 2014 zeigt die Spalteneruption. Über eine Länge von ca. 3 km hat sich der Boden geöffnet. Zwei Lavaströme – nach Norden und nach Osten – leiten die Lava in tiefere Regionen. Der Gletscher liegt hier weiter südlich und ist auf der Aufnahme nicht zu erkennen. Zwei Vulkane, aber mit unterschiedlicher Prägung.
Unter El Hierro speist ein Hotspot den Magmanachschub. Er brennt sich durch eine feste Erdplatte nach oben durch und erzeugt Vulkanbeben.
Island liegt dagegen auf dem Rand von zwei Kontinentalplatten. Die Magma dringt zwischen den Plattengrenzen nach oben und erzeugt damit auch größere Verwerfungen – Folge: mehr und stärkere Beben. Es dürfte sich also um eine Kombination von tektonischen und vulkanischen Beben handeln.
Unabhängig vom Vulkantyp (= Magma-Zusammensetzung) zeigt fast jeder Vulkan sein eigenes Profil. Entscheidend ist der geografische Standort und der geologische Untergrund. Danach baut sich dann auch das zu erwartende Gefahrenpotential für den Menschen auf.

Während auf El Hierro kaum große Sturzfluten zu erwarten sind, wird Island keine Bergrutsche befürchten müssen. Hier gibt es einfache Fluchtmöglichkeiten, während auf einer kleinen Insel schon größere Anstrengungen notwendig sind.
Ein Vulkan ist und bleibt gefährlich und unberechenbar. Ständiges Beobachten und Kontrollieren ändert zwar nicht seine Gewalt, gibt aber etwas Zeit sich vor einer Eruption und den Folgen in Sicherheit zu bringen.

Freitag, 19. September 2014

Wie gefährlich sind Vulkangase?

Was macht das Vulkangas Schwefeldioxid SO2 so gefährlich?


Bei jedem Vulkanausbruch werden große Mengen an Vulkangasen ausgestoßen. Es ist besonders das Schwefeldioxid SO2 das für 
Mensch und Tier auch in weiten Entfernungen von der Eruptions- Stelle noch gefährlich werden kann. Auf der Karte (DLR) ist der Ausbreitungsweg vom Vulkan Bardarbunga auf Island zur Küste Norwegens und über das Nordmeer nach Osten zu erkennen. Dunkelrote Einfärbungen zeigen eine besonders hohe Konzentration.

Mit dem UV-Spektrometer Gome 2 auf dem Erdbeobachtungssatelliten MetopA und MetopB empfängt das Deutsche Zentrum für Luft- und Raumfahrt (DLR) in Oberpfaffenhofen alle zwei Stunden die neuesten Messdaten der Schwefeldioxid-Wolke.


Schwefeldioxid, SO2, ist das Anhydrid der Schwefligen Säure H2SO3. Schwefeldioxid ist ein farbloses, schleimhautreizendes, stechend riechendes und sauer schmeckendes, giftiges Gas. Es ist sehr gut (physikalisch) wasserlöslich und bildet mit Wasser in sehr geringem Maße Schweflige Säure (Quelle: Wikipedia).


Schwefeldioxid schädigt in hohen Konzentrationen Mensch, Tiere und Pflanzen. Die Oxidationsprodukte führen zu „saurem Regen“, der empfindliche Ökosysteme wie Wald und Seen gefährdet sowie Gebäude und Materialien angreift. Entschwefelungsanlagen und andere technischen Einrichtungen sollen die künstlich vom Menschen erzeugten Schwefeldioxidwerte reduzieren.

Eine Schwefeldioxidkonzentration, die über dem Normalwert liegt, kann beim Menschen zu Kopfschmerzen, Übelkeit und Benommenheit führen. In höheren Konzentrationen schädigt das Gas stark die Bronchien und Lungen.

Eine hohe Schwefeldioxidkonzentrationen über einen längeren Zeitraum aufgenommen, führt durch die Zerstörung des für die Blutbildung wichtigen B12-Vitamins zu Anämie (Blutarmut) und kann zum Tode führen.


Bisher war Island und Skandinavien noch nicht direkt betroffen. Die Windströme führten die Schwefeldioxidwolken noch nördlich um die bewohnten Gebiete herum. Aber eine Richtungsänderung des Windes kann schnell die Situation ändern. Die Messmethoden lassen zur Zeit nur die räumliche Ausbreitung per Satellit erkennen. Die Genauigkeit der Schwefeldioxid-Werte oder eine Vorhersage über den Strömungsverlauf ist noch beschränkt. Es sind grobe Schätzungen und Hochrechnungen aus den Werten der örtlichen Messeinrichtungen, die die Konzentration in entfernteren Regionen in etwa Abschätzen lassen.

Wie mehrere Institute übereinstimmend vermuten, werden aus den Vulkanschloten auf Island zur Zeit pro Sekunde 700 bis 1000 kg Schwefeldioxid ausgestoßen

Nicht nur die Vulkangase, sondern auch die Verformung wird interessant.


Fast 150 Erdbeben wurden gestern auf Island registriert. Über 45 Beben traten am Bardarbunga auf. Das stärkste Beben von ML5,3 am nördlichen Rand der Caldera um 14.22 Uhr. 

Hatte sich die Caldera in den letzten Tagen durchschnittlich pro Tag um 50 cm gesenkt, scheint nun eine Änderung einzutreten. Die IMO Grafik zeigt den Kurvenverlauf der letzten 3 Tage. Seit heute Morgen scheint die Absenkung gestoppt und eine leichte Aufblähung zu erfolgen (Danke an Peter Kockshold).

Was kann das bedeuten?
Der Magmaabfluss zur 20 km nördlich entfernten Eruptionsspalte versiegt – oder es steigt kräftig neue Magma aus dem Erdinnern in die Magmakammer nach.
Nach den Indizien der jüngsten starken Beben direkt beim Barbarbunga (aktuelle Werte in der rechten Seitenleiste anklicken) muss eigentlich unterstellt werden, dass jetzt die Zeit für den Bardarbunga selbst gekommen ist. Die flachen Bebentiefen bis 0,8 km Tiefe (gemessen wird ab Meereshöhe) werden oder haben schon bereits einen Durchbruch unter der bis zu 600 Meter dicken Gletscherschicht geschafft.

Die isländischen Wissenschaftler sind sich auch nicht im Klaren, ob die Eisschicht bereits von heißer Magma erreicht wurde. Es müssten größere Wasserabläufe aus der Caldera zu beobachten sein. Dies ist aber noch nicht der Fall. Auch wäre es möglich, dass sich unter dem Gletscher bereits ein See gebildet hat, der noch von den harten Eisschichten gefangen gehalten wird. Es wäre dann allerdings nur eine Frage der Zeit bis die Dämme brechen.

Auch dieser Vulkanausbruch auf Island steckt wieder voller Geheimnisse … und auch wenn ich mich wiederhole “Die Natur lässt sich nicht so einfach in ihre Karten schauen”.
Die Wissenschaft um die Vulkanologie ist erst am Anfang. Sie kennt bisher nur die Rahmen -Bedingungen – die genauen Spielregeln müssen noch entdeckt werden.